Vehicle-2-X Communication to Enable Autonomous Driving Systems

Motivation

- Most autonomous vehicles are based on perception subsystem (on-board sensors, e.g., camera, radar, lidar and GPS) and control subsystem
- Approach imposes some drawbacks:
 - Limited perception range and accuracy of on-board sensors
 - Complex integration (high cost) of sensors into current vehicles
- V2X communication allows the exchange of information among nearby autonomous vehicles by means of ad hoc networking
- Cooperative Autonomous Driving Systems (C-ADS) combine vehicular communication and autonomous driving to enable two key features:

Cooperative Sensing

- Increases sensing range of autonomous vehicles
- Allows cars to “see” behind obstacles and around corners

Cooperative Maneuvering

- Allows a group of autonomous vehicles to drive coordinately
- Enhances the safety and efficiency of maneuvers

Performance Evaluation of Convoy Communications

- Use of coupled vehicle and network simulation framework
- Simulation scenario:
 - Convoy of 6 to 32 cooperative autonomous vehicles driving on a highway
 - Propagation model: multi-slope log-distance with Nakagami fading
 - Transmission power and data rate from IEEE 802.11 OCB / ITS-G5
 - Average results of 10 simulation runs with 95% confidence intervals
- Main results:
 - Node coverage ratio (reliability) of the convoy communications is lower in large convoys, unless the interval between transmissions of convoy messages is increased
 - Communication delay of convoy messages increases with convoy size and message frequency
 - Trade-off between node coverage ratio and communication delay of convoy messages

Selected Publications

Testing Environments for V2X Communications

- Bidirectionally-coupled vehicle and network simulation framework
 - Webots: vehicle simulator with highly realistic vehicle dynamics
 - ns-3: network simulator with accurate V2X network model
 - Simultaneous execution of both simulators and information exchange via a communication plugin
 - Study impact of V2X communication on the maneuvering performance of C-ADS

- Hardware testing with Cohda MK5 on-board units
 - Dual IEEE 802.11 radios, processor running V2X software stack and GNSS
 - Protocol stack for cooperative automated driving developed in AutoNet2030 project
 - PXI channel emulator allows a higher realism
 - Planned field trials on actual vehicles driving in a circuit

Convoys of Autonomous Vehicles

- Fast and reliable communication to support autonomous driving, in particular for convoys of autonomous vehicles:
 - Groups of autonomous cooperative vehicles in line
 - Maintain close distance and travel to a common destination
 - Fully distributed control mechanism
- Periodic transmission of single-hop broadcast convoy messages allows convoy vehicles to maneuver cooperatively:
 - Vehicles exchange position, speed, heading and maneuver intentions
 - Each vehicle controller uses this information to steer the vehicle appropriately
- Convoy vehicles are subdivided into groups:
 - Convoy vehicle: vehicle that leads the convoy
 - Convoy messages: messages exchanged within a convoy

Links & Protocols Group: Dr. A. Festag, A. Gonzalez, S.-C. Hung, S. Kühlmorgen, Dr. I. Llatser, A. Wolf, Dr. X. Zhang
Contact: andreas.festag@tu-dresden.de

www.vodafonechair.com