Vehicular Communication Performance in Convoys of Automated Vehicles

Ignacio Llatser ignacio.llatser@tu-dresden.de
Andreas Festag andreas.festag@tu-dresden.de
Gerhard Fettweis gerhard.fettweis@tu-dresden.de
Cooperative Autonomous Driving Systems (C-ADS)

- Autonomous vehicles and roadside units exchange information by means of V2X communications
 - Greatly improve safety and traffic efficiency
- C-ADS enable two key features
 - Cooperative sensing: allows vehicles to “see” behind obstacles
 - Cooperative maneuvering: vehicles share maneuver intentions

Convoys of cooperative autonomous vehicles

- In order to drive cooperatively, vehicles are associated in convoys
 - Multi-lane groups of cooperative vehicles
 - Maintain a close distance and travel to a common destination
 - Fully distributed control mechanism

- Dynamic graph-based formation control
 - Guide individual vehicles to converge into a spatial formation
 - The convoy structure is modeled with a graph
 - Vertices: vehicles
 - Edges: relative vehicle positioning
V2X communications in convoys

- Convoy vehicles send periodic **convoy messages** to all other convoy vehicles
 - Single-hop broadcast messages
 - Transmission frequency can be freely chosen
 - **Content:**
 - car ID
 - clock
 - position
 - speed
 - heading
 - lane number
 - headway
 - vehicle state

- Transmitted via BTP / GeoNetworking / IEEE 802.11 OCB / ITS-G5

- They allow convoy vehicles to perform cooperative maneuvers
 - Join/leave convoy
 - Lane change
 - Freeway merging
 - Change speed/headway
Performance evaluation of convoys

- Bidirectionally-coupled vehicle and network simulation framework
 - Webots: vehicle simulator with highly realistic vehicle dynamics
 - ns-3: network simulator with accurate V2X network model
 - Simultaneous execution of both simulators and information exchange via a communication plugin
 - Impact of V2X comm on the maneuvering performance of C-ADS
Performance evaluation of convoys

- Communication metrics allow to quantify the performance of convoy communications

Simulation scenario

- Ring-shaped freeway with 8 lanes and 2 km length
- **Convoy size**: from 6 to 40 vehicles
- **Convoy message transmission frequency**: from 0.5 to 15 Hz
- Propagation: multi-slope log-distance + Nakagami
- PHY/MAC layer: IEEE 802.11 OCB
- 160 vehicles near the convoy send periodic CAMs
- 10 simulation runs with 30 s duration
Node coverage ratio (NCR)

- Measures how many vehicles receive the convoy messages (reliability)
 - NCR = \(\frac{\text{# Rx vehicles in the convoy}}{\text{# vehicles in the convoy}} \)

The NCR decreases as the convoy size grows
- It can be improved by lowering the transmission frequency of convoy messages

The NCR = 66%
Communication delay

- Average latency of convoy messages (transmission + propagation + processing delays)
 - Delay = $t_{Rx} - t_{Tx}$
 - The delay increases for larger convoys and higher message frequency
 - Remains below 5 ms in all tested scenarios
Global transmission rate

- Total number of transmitted convoy messages per second (channel congestion)

 Rate = \frac{\# \text{ vehicles in the convoy}}{\text{interval between Tx of convoy messages}}

Directly proportional to the convoy size and the convoy message frequency

- The convoy communication performance degrades for high global transmission rates
Data age

- Time since the last received convoy message was generated (freshness of data)

\[t_{age} \in [t_d, t_d + T(1 + N_p)] \]

- \(t_d \): communication delay
- \(T \): message transmission period
- \(N_p \): number of lost messages

Mainly determined by the convoy message frequency

- Convoy messages need to be transmitted frequently in order to maintain a low data age
Conclusions

- Cooperative autonomous driving systems (C-ADS) allow vehicles to increase their sensing range and maneuver coordinately by means of V2X communications.

- **Convoys** are groups of autonomous vehicles with decentralized control by means of information exchange among the convoy members.

- The **convoy communication** parameters have a direct impact in the communication performance:
 - Reliability, delay, channel congestion, data age

- Convoy communications need to be carefully designed in order to achieve the required performance **trade-off**:
 - As a function of the number of cooperative vehicles (traffic congestion)
AutoNet2030 general overview

<table>
<thead>
<tr>
<th>EC Call</th>
<th>FP7-ICT-2013-10</th>
<th>EU Funding</th>
<th>Project Start-End</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of action</td>
<td>Project budget</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Partners
ARMINES, BaseLabs, BroadBit Energy Tech., CRF, EPFL, Hitachi Europe, ICCS, TU Dresden, SCANIA.

Target
Automated Driving Technology supported by cooperative ITS

Overall Approach
To enable the convergence of pure sensor-based automation with cooperative V2X communications and decentralised maneuvering control algorithms

Ignacio Llatser ignacio.llatser@tu-dresden.de